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Abstract. Non-linear dynamical systems of different areas of engineering and technology are 

subject to parameters that should most of the times be realistically modelled as random 

variables, although they are usually considered to be deterministic. This paper addresses in a 

simple, almost naïve fashion, the reliability analysis of those systems, starting from a 

deterministic analysis, but then bringing into it the statistical properties of input variables. 

Although the concept of dynamical integrity has greatly contributed to establishing safe 

thresholds in dynamical systems, requiring that the basins of attraction should be robust, a 

reliability measure is still missing in that respect. In fact, supposing that the erosion curve of a 

dynamic integrity measure 𝐼 (for instance, the integrity factor) has been obtained in terms of a 

system parameter 𝐴 (for instance, a load amplitude, a load frequency, or still an imperfection 

parameter) using a deterministic approach, one can estimate the output statistical properties for 

𝐼, in terms of those of the input parameter 𝐴, now considered as a random variable in its own 

right. Hence, once reference values for the integrity measure 𝐼𝑟𝑒𝑓 and the system parameter 𝐴𝑟𝑒𝑓 

have been established, and assuming that increase of 𝐴 beyond 𝐴𝑟𝑒𝑓 may prove to be dangerous, 

the probability that 𝐼 ≥ 𝐼𝑟𝑒𝑓, provided that 𝐴 ≤ 𝐴𝑟𝑒𝑓, would give a sound reliability assessment. 

A very simple approach towards this aim is proposed and applied herewith to an archetypal 

model of a rigid column asymmetrically constrained by a linear spring, subject to a conservative 

axial compression and a small dynamical transversal load, playing the role of a random 

dynamical imperfection. It should be said that this work is a continuation of another one, with 

the same archetypal model, yet taking into account only the effect of a statical imperfection. A 

versatile in-house code is used to obtain the basins of attraction and the erosion curves that give 

support to the proposed methodology. The reliability assessment is carried out in two different 

scenarios, namely varying either the dynamical imperfection amplitude or its frequency. The 

influence of nearness to either buckling, or to external resonance or even parametric resonance 

can be studied according to the proposed methodology. It is simple and easy to be applied. 

Therefore, one hopes that it can be absorbed in engineering design practice without its 

traditional resistance to incorporate new trends. Keywords: Reliability analysis, Safe basin, 

Dynamic integrity, Integrity factor, Dynamic random imperfection 

1.  Introduction 

 

In continuation to the ideas initially addressed in [1], we recast the same archetypal model studied in [2] 

of a rigid column asymmetrically constrained by a linear spring, subject to a conservative axial 

compression 𝑃 and a small transversal load  𝑄(𝑡) = 𝑄0 + 𝑄1𝑠𝑖𝑛Ω̂𝑡, playing the role of a dynamical 

imperfection, as depicted in Fig.1. In [1], it was implicitly considered the case of a random statical 

imperfection 𝑄 = 𝑄0 only, which defined the so-called Koiter’s load with certain statistical properties, 

whereas in the present paper either 𝑄1 or Ω̂ will be assumed as random variables. 
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Figure 1. Archetypal model, adapted from [2]. 

 

 

In [2], the dimensionless equation of motion of this model is presented in the form: 

 

 𝛽̈ + 𝑐𝛽̇ − 𝑝𝑠𝑖𝑛𝛽 + [1 −
1

√1+𝛼𝑠𝑖𝑛𝛽
− (𝑞0 + 𝑞1𝑠𝑖𝑛𝜔̂𝜏)] 𝑐𝑜𝑠𝛽 = 0   (1) 

 

where 𝑐 stands for an assumed viscous damping coefficient, 𝑝 =
𝑃

𝐾𝐿
 is the dimensionless conservative 

compressive force, 𝛼 =
2𝐿𝐻

(𝐿2+𝐻2)
 defines the overall geometry, 𝑞 =

𝑄

𝐾𝐿
= 𝑞0 + 𝑞1𝑠𝑖𝑛𝜔̂𝜏 is the 

dimensionless lateral load playing the role of a statical plus a dynamical imperfection, 𝜔̂ = Ω̂√
𝐽

𝐾𝐿𝐻
 is 

the dimensionless forcing frequency, 𝐽 is the rigid column mass moment of inertia with respect to hinge 

B, 𝜏 = 𝑡√
𝐾𝐿𝐻

𝐽
 is the dimensionless time, and over dots mean differentiation with respect to 𝜏. 

 

It is worth mentioning that linearization of Eq.(1) indicates that the dimensionless natural frequency 

of the system is 𝜔 = √
𝛼

2
− 𝑝, so that the system approaches buckling as 𝑝 approaches 

𝛼

2
 (Euler’s load). 

In other scenarios, it approaches external or parametric resonances as 𝜔̂ approaches either 𝜔 or 2𝜔, 

respectively. Hence, approaching to either buckling or resonances could take place. By the way, 

parametric instability in this system is associated to quadratic nonlinearities. In this paper, only loads 

well below Euler’s load will be considered, so that attention is focused on the resonances. In any case, 

basins of attraction will be obtained to identify attractors and evaluate the associated integrity measure 

𝐼 (it can be 𝐺𝐼𝑀, 𝐿𝐼𝑀 or 𝐼𝐹   [3, 4]), for a set of system control parameters 𝐴 (for instance, 𝑞0, as in [1]; 

or 𝑞1 and 𝜔̂ as herewith). Varying the chosen parameter 𝐴, the erosion curve 𝐼(𝐴) can be drawn, 

following a deterministic analysis. Yet, provided the statistical properties of the input parameter 𝐴 are 

known, the statistical properties of the output variable 𝐼 can be estimated [1, 5], thus allowing a reliability 

analysis to be made at different complexity levels [6]. What it will be presented here is perhaps the 

simplest, even naivest, reliability analysis of them all. It will be applied to the erosion profiles 𝐼𝐹(𝑞1) 

and 𝐼𝐹(𝜔̂). 

 



 

 

 

 

 

 

2.  Methodology for a simple reliability analysis 

 

Consider a generic erosion profile 𝐼(𝐴). Its local slope in absolute value is given by |
𝑑𝐼

𝑑𝐴
|. Supposing that 

the parameter 𝐴 is a Gaussian random variable, with a standard deviation 𝜎𝐴 about the expected value 

𝐴̅, it is assumed that the output 𝐼 will also be a Gaussian random variable with a local standard deviation 

𝜎𝐼 = 𝜎𝐴  |
𝑑𝐼

𝑑𝐴
| about the expected value 𝐼 .̅ This assumption has been crosschecked in [1] and shown to 

work out well. A simple way to consider safety in engineering design is to choose a minimum reference 

value 𝐼𝑟𝑒𝑓 to be achieved (with a previously defined probability to be attained), provided the parameter 

𝐴 would not be larger than a specified value 𝐴𝑟𝑒𝑓. Hence, for every point (𝐴̅, 𝐼)̅, it can be assessed the 

probability for which the integrity measure complies with 𝐼 ≥ 𝐼𝑟𝑒𝑓, provided 𝐴 ≤ 𝐴𝑟𝑒𝑓. 

2.1.  A simple reliability analysis for the erosion profile 𝐼𝐹(𝑞1) 

 

The erosion profile of Fig.2 was extracted from [2], where the following fixed system parameters were 

considered: 𝑐 = 0.01; 𝑞0 = 0.01; 𝛼 = 0.8, 𝑝 = 0 and 𝜔̂ = 0.8. It refers to the attractor 𝛽 = 0 of the 

perfect system. Notice that the linearized natural frequency of the system is 𝜔 = √
𝛼

2
= 0.632. Thus, the 

dynamical imperfection forcing frequency is non-resonant. Nevertheless, the increase of the dynamical 

imperfection amplitude 𝑞1 causes an erosion of both the integrity factor 𝐼𝐹 and the global integrity 

measure 𝐺𝐼𝑀. Both 𝐼𝐹 and 𝐺𝐼𝑀 were normalized with respect to their values for 𝑞1 = 0. So, both 

erosion profiles depart from the same point and end up at the same point, which corresponds to the 

escape Koiter’s load for 𝑞1 [2]. However, in between the extreme points, it is noticed a clear difference 

between 𝐼𝐹 and 𝐺𝐼𝑀, which can be explained by the fractalization of the safe basin that is not fully 

detected by 𝐺𝐼𝑀. 

 

 
Figure 2. Erosion profiles 𝑰𝑭 × 𝒒𝟏 and 𝑮𝑰𝑴 × 𝒒𝟏 extracted from Fig.11 of [2]. 

For the sake of an illustration, the simplified methodology to carry out the reliability analysis, as 

previously explained, is applied to the erosion profile 𝐼𝐹 × 𝑞1 of Fig.2, at the point (𝑞1̅̅ ̅, 𝐼𝐹̅̅ ̅) =

(0.075; 0.50), for which |
𝑑𝐼

𝑑𝐴
| ≅ 9. Assuming an input standard deviation  𝜎𝑞1

= 0.040, the estimated 

output standard deviation would be 𝜎𝐼𝐹 = 0.36, leading to 31.73% probability for 𝐼𝐹 to be at least  𝐼𝐹̅̅ ̅ +
𝜎𝐼𝐹 = 0.86, provided 𝑞1 is lot larger than 𝑞1̅̅ ̅ + 𝜎𝑞1

= 0.115; 50% probability for 𝐼𝐹 to be at least 𝐼𝐹̅̅ ̅ =

0.50, provided 𝑞1 is lot larger than 𝑞1̅̅ ̅ = 0.075; and 68.27% probability for 𝐼𝐹 to be at least 𝐼𝐹̅̅ ̅ − 𝜎𝐼𝐹 =



 

 

 

 

 

 

0.14, provided 𝑞1 is lot larger than  𝑞1̅̅̅ − 𝜎𝑞1
= 0.035. These results could be used to decide whether 

the choices of 𝐼𝐹̅̅ ̅ = 0.50, and henceforth 𝑞1̅̅ ̅ = 0.075, were good enough for a safe engineering design. 

 

2.2.  A simple reliability analysis for the erosion profile 𝐼𝐹(𝜔̂) 

 

The in-house PoliBoA code, based on [6], is fit to obtain the basins of attraction of dynamic systems 

within an n-dimensional phase space, as well as the desired dynamic integrity measure (𝐺𝐼𝑀, 𝐿𝐼𝑀 or 

𝐼𝐹). Fig.3 depicts the basins of attraction for a sample of values of the dynamical imperfection frequency 

𝜔̂, with the indication of the integrity factor 𝐼𝐹 associated with the radius of the maximum circle 

inscribed within the corresponding safe basin. The following system parameters were kept fixed: 𝑐 =
0.01; 𝑞0 = 0.01; 𝑞1 = 0.05, 𝛼 = 0.8 and 𝑝 = 0.05, whereas 𝜔̂ assumes successively the values: 0.00, 

0.10, 0.20, 0.30, 0.35, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30 and 1.40, as one goes 

from left to right and from top to bottom in Fig. 3. 

 

 

  

  



 

 

 

 

 

 

  

  

  



 

 

 

 

 

 

  

  

  
Figure 3. Basins of attraction in plane 𝜷̇ × 𝜷 for several values of the imperfection frequency 𝝎̂. 

Hence, from the code Poli BoA it was possible to obtain the erosion profile 𝐼𝐹 × 𝜔̂ of Fig. 4, 

considering the attractor 𝛽 = 0 of the perfect system. The graph was normalized with respect to the 𝐼𝐹 

for 𝜔̂ = 0. 

 



 

 

 

 

 

 

    
Figure 4. Erosion profile 𝑰𝑭 × 𝝎̂ obtained with PoliBoA [3]. 

 

Notice that the system linearized natural frequency is 𝜔 = √
𝛼

2
− 𝑝 = 0.5916. 𝐼𝐹 is practically zero 

for 0.4 < 𝜔̂ < 0.6, range that includes the natural frequency, thus showing the effect of external 

resonance degrading the system dynamic integrity and, consequently, its reliability.  For larger forcing 

frequencies, the system recovers its integrity factor, as the external resonance is left behind. However, 

a new steep loss in 𝐼𝐹 is detected, this time due to approaching the principal parametric resonance 2:1, 

for which 𝜔̂ = 1.1832, again rising as parametric resonance is left behind. 

A similar reliability analysis to that of Section 2.1 was carried out for 𝜔̂  modelled as a random 

variable. First, the analysis is illustrated for the point (𝜔̂ ̅̅ ̅, 𝐼𝐹̅̅ ̅) = (0.35; 0.52), halfway towards the 1:1 

external resonance, for which |
𝑑𝐼

𝑑𝐴
| ≅ 6.5, as shown in Fig. 4. Assuming an input standard deviation  

𝜎𝜔̂ = 0.04, the estimated output standard deviation would be 𝜎𝐼𝐹 = 0.26, leading to 31.73% probability 

for 𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ + 𝜎𝐼𝐹 = 0.78, provided 𝜔̂ ≤ 𝜔̂ ̅̅ ̅ + 𝜎𝜔̂ = 0.39; 50% probability for 𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ = 0.52, 

provided 𝜔̂ ≤ 𝜔̂ ̅̅ ̅ = 0.35; and 68.27% probability for  𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ − 𝜎𝐼𝐹 = 0.26, provided 𝜔̂ ≤ 𝜔̂ ̅̅ ̅ −
𝜎𝜔̂ = 0.31. Again, these results could be used to decide whether the choices of 𝐼𝐹̅̅ ̅ = 0.52 and 𝜔̂ ̅̅ ̅ =
0.35, were appropriate for a safe engineering design considering the external resonance. Next, looking 

at the parametric instability scenario, the analysis is illustrated for the point (𝜔̂ ̅̅ ̅, 𝐼𝐹̅̅ ̅) = (1.10; 1.20), for 

which |
𝑑𝐼

𝑑𝐴
| ≅ 3.7, as shown in Fig. 4. Assuming, as before, an input standard deviation  𝜎𝜔̂ = 0.04, the 

estimated output standard deviation would be 𝜎𝐼𝐹 = 0.15, leading to 31.73% probability for 𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ +
𝜎𝐼𝐹 = 1.35, provided 𝜔̂ ≤ 𝜔̂ ̅̅ ̅ + 𝜎𝜔̂ = 1.14; 50% probability for 𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ = 1.20, provided 𝜔̂ ≤ 𝜔̅ =
1.10; and 68.27% probability for  𝐼𝐹 ≥ 𝐼𝐹̅̅ ̅ − 𝜎𝐼𝐹 = 1.05, provided  𝜔̂ ≤ 𝜔̂ ̅̅ ̅ − 𝜎𝜔̂ = 1.06. Again, these 

results could be used to decide whether the choices of 𝐼𝐹̅̅ ̅ = 1.20 and 𝜔̂ ̅̅ ̅ = 1.10, were appropriate for a 

safe engineering design. The parametric resonance scenario does not seem to be critical in this 

simulation since its effect is upon the quadratic non-linearity.  

 



 

 

 

 

 

 

3.  Concluding remarks 

 

The paper presents a simplified reliability analysis based on the erosion curves of a dynamical system, 

provided the statistical properties of an appropriate input random system parameter is known. The 

proposed methodology is applied, for the sake of an example, to the archetypal model of a rigid column 

hinged at the bottom and elastically restrained by an inclined linear spring, subject to a conservative 

compression and a lateral dynamic load that plays the role of an imperfection. Both the effects of 

randomness in the imperfection amplitude and frequency are discussed, emphasizing the effects upon 

the integrity measure, as dynamical thresholds, such as the Koiter’s escape load or resonances (external 

or parametric) are approached. The simplicity and easiness required for the application of this 

methodology gives hope that this methodology can be absorbed in engineering design practice 

overcoming its traditional resistance to incorporate new trends. Reference should be made to an 

improved reliability analysis, as addressed in [1]. 
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